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1. Introduction
The field of topology serves as a cornerstone of modern mathematical analysis,

providing insights into the properties and relationships of space that are preserved
under continuous transformations. A central theme within this discipline is the
study of separation axioms, which delineate the conditions under which distinct
points and sets can be distinguished from one another within a topological space.
Separation axioms, traditionally represented as T0, T1, T2, T3, and T4 form a criti-
cal framework for understanding the topology of various spaces. These axioms not
only facilitate a classification of spaces but also underpin many fundamental theo-
rems and concepts in topology. Recent contributions by researchers such as Tong
[13], who analyzed the relationships between T0 and T1 spaces. The basic proper-
ties of the multiset can be found in Girish [5], who explored multisets in relation
to topological properties, have enriched this discourse. Additionally, Hoque, et.al.,
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[6] introduction of the multiset separation axiom and Nithyanantha Jothi [7, 8, 9]
development of binary topological spaces highlight the evolving nature of this field
and separation axioms of various condition in binary multiset topological space.
Sobhy , et.al. [4] portrayed the separation axioms in multiset topological space
established the T0, T1, T2, T3, T4, and T5 and theorem and properties are derived.
Building on these advancements, Amer [1] innovative work on binary D-separation
axioms offers fresh perspectives on the relationships among derived points and ker-
nels within binary topological spaces. Sureka and Sindhu [11] provided the new
class of open binary multiset topological space and their overview of properties and
also Sharavan [12] established in metrizability of multiset topological space are de-
fined theorem and examples. Priyalatha, et.al., [10] introduced new topological for
the binary multiset topological space and presented some theorem and examples.
Also, the multiset topological space established the application of the genetic mu-
tation of DNA and RNA for the basic properties and examples are presented [2]
[3] {G, G, G, T, T, T, T, A, C, C, A, A} has an equivalent representation in bms
{3/G, 4/T, 2/C, 3/A }.
This work is organized as follows: After this introduction, in Section 2, recall some
definitions and results that are required to make this work self-contained. In Sec-
tion 3, introduce the concepts of functionally Ti spaces for i = 0, 1, 2, 3, 4, 5, T2 1

2
,

and study their definitions and theorems. In Section 4, examine their main prop-
erties, especially those related to bms topological spaces. In Section 5, study the
characterization of the bms separation axioms and their properties. Finally con-
clude with some remarks and propose future work in Section 6.

2. Basic Preliminaries

Definition 2.1. [7] A binary topological space (X, Y,M) is called a binary −T0 if
for any two binary points (x1, y1), (x2, y2) ∈ X × Y with x1 ̸= x2, y1 ̸= y2, there
exists (A,B) ∈ M such that exactly one of the following holds:

1. (x1, y1) ∈ (A,B), (x2, y2) ∈ (X \ A, Y \B), and

2. (x1, y1) ∈ (X \ A, Y \B), (x2, y2) ∈ (A,B).

Definition 2.2. [7] A binary topological space (X, Y,M) is called a binary-T1 if for
every (x1, y1), (x2, y2) ∈ X × Y with x1 ̸= x2, y1 ̸= y2, there exist (A,B), (C,D) ∈
M , with (x1, y1) ∈ (A,B) and (x2, y2) ∈ (C,D) such that (x2, y2) ∈ (X \A, Y \B)
and (x1, y1) ∈ (X \ C, Y \D).

Definition 2.3. [9] The binary points (x1, y1), (x2, y2) ∈ X × Y are distinct if
x1 ̸= x2, y1 ̸= y2.
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Definition 2.4. [9] The ordered pair ((A,B)◦1, (A,B)◦2) is called the binary interior
of (A,B), denoted by b-int(A,B).

Definition 2.5. [9] The ordered pair ((A,B)∗1, (A,B)∗2) is called the binary clo-
sure of (A,B), denoted by b-cl(A,B) in the binary space (X, Y,M) where (A,B) ⊆
(X, Y ).

Definition 2.6. [9] Let (X, Y,M) be a binary topological space and let (x, y) ∈
X × Y . The binary open set (A,B) is called a binary neighborhood of (x, y) if
x ∈ A and y ∈ B.

Definition 2.7. [1] Let M ∈ [X]w and τ ⊆ P ∗(M). Then, τ is called a multiset
topological space of M if τ satisfies the following properties.
(i) The mset M and the empty mset ϕ are in τ .
(ii) The mset union of the elements of any sub collection of τ is τ .
(iii) The mset Intersection of the elements of any finite sub collection of τ is inτ .

Definition 2.8. [1] Given a submset A of an M-topological space M in [X]w, the
interior of A is defined as the mset union of all open mset contained in A and its
denoted by Int(A). i.e., Int(A)=∪{G ⊆ M : Gis an open mset and G ⊆ A} and
CInt(A)(x) = max{CG(x) : G ⊆ A}.
Definition 2.9. [1] Given a submset A of an M-topological space space M in [X]w,
the closure of A is defined as the mset intersection of all closed mset containing A
and its denoted by Cl(A). i.e., Cl(A) = ∩{K ⊆ M : Kis a closed mset and A ⊆
K} and CCl(A)(x) = min{CK(x) : A ⊆ K}.
Definition 2.10. [9] Let X And Y be any two no empty sets. A binary topological
space X to Y is a binary structure M ⊆ ρ(X) × ρ(Y ) that satisfies the following
axioms.
(i) (ϕ, ϕ) and(X,Y) ∈ M.
(ii) (A1 ∩ A2, B1 ∩B2) ∈ M whenever (A1, B1) ∈ M, (A2, B2) ∈ M .
(iii) If {(Aα, Bα) : α ∈ ∆} is a family of members of M, Then, (

⋃
α

∈ ∆Aα,
⋃
α

∈

∆Bα) ∈M.

Definition 2.11. [2] In biology, mutations are changing to the nucleotide sequence
of the genetic material of an organism. Mutations might happen by copying errors
in genetic material during cell division. Classification of mutations is based on the
following: Effect on structure, Effect on function, Aspect on phenotype affected, Ef-
fect on inheritance. Structurally, mutations can be classified as follows: small-scale
mutations (affecting small genes in one or few nucleotides), large-scale mutations
(affect chromosomal structure). Small scale: One gene is affected by any change to
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the DNA sequence of a gene: nucleotides/bases may be added, missed, or changed:
point mutation, insertions, deletions.
1. Point mutations: These occur within the protein-coding region of a gene which
is classified into the following three types according to the erroneous codon codes:
(i) Silent mutation through which there is a code for the same amino acid.
(ii) Missense mutation through which there is code for different amino acids.
(iii) Nonsense mutation through which there is a code for stop and can truncate
the protein.
(iv) Netural mutation through which there is a detectable change in the function of
the protein.
2. Frameshift mutation: It is usually caused by errors during replications of repeat-
ing elements; insertions in the coding region of a gene cause; a shift in the reading
frame (frameshift); one or more bases (A, T, C, or G) are added or deleted. A lot
of researchers use biological methods for the identification and repair of mutations.

Note 2.12. [10]We know that, the power set of a m-set M1(resp.M2) is the support
set of the power m-set of M1(resp.M2), is symbolized by P ∗(M1)(resp.P

∗(M2)). We
can define P ∗(M1)× P ∗(M2) = {(Ai, Bi) : Ai ∈ P ∗(M1), Bi ∈ P ∗(M2)}. According
this definition, the ordered pair ({A,B}) is called a bms from M1 and M2 where
A ⊆ M1 and B ⊆ M2. That is, the bms ({A,B}) is an element in P ∗(M1)×P ∗(M2).

Definition 2.13. [10] Let M1 ∈ [U ]w, M2 ∈ [V ]r be two m-sets drawn from U and
V respectively. A binary multiset topology (briefly, bms-topology) from M1 to M2

is a binary multiset structure τb ⊆ P ∗(M1) × P ∗(M2) that satisfies the following
axioms:

(i) (ϕ, ϕ), (M1,M2) ∈ τb

(ii) If ({A1, B1}), (A2, B2) ∈ τb, then (A1 ∩ A2), (B1 ∩B2) ∈ τb.

(iii) If {(Aλ, Bλ) : λ ∈ J} ⊆ τb, then (∪Aλ,∪Bλ) ∈ τb.
In this case, the structure (M1,M2, τb) is called bms-topological space(or bms-
space).
Note that τb is an ordinary set whose elements are bms.

Definition 2.14. [10] For a bms-space (M1,M2, τb), we have

(i) Each element in τb is called an open binary multiset (or open bms) and the
complement of open bms is named a closed binary multiset (or closed bms).

(ii) A sub-bms ({A,B}) of a bms-space (M1,M2, τb) is said to be closed bms if
({A,B})c = (M1 ⊖ A,M2 ⊖B) is an open bms.
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Definition 2.15. [10] Let (M1,M2, τb) be an bms-topological space and A ⊆ M1,
B ⊆ M2. Then ({A,B}) is closed bms in (M1,M2, τb) if (M1 ⊖ A,M2 ⊖ B) ∈ τb,
the complement of closed bms τ cb .

Definition 2.16. [10] The ordered pair ({A1, B1})∗, (A2, B2)
∗ is called bms closure

of ({A,B}) is defined as the intersection of all closed bms containing in ({A,B}) de-
noted by clb({A,B}) is bms topolgical space (M1,M2, τb) where ({A,B}) ⊆ (M1,M2),
clb({A,B})or({A,B}) = ∩{({G,H}) ⊆ (M1,M2) : ({G,H})is a closed bms and
({A,B}) ⊆ ({ G,H})}.
Definition 2.17. [10] A non-empty bms (A,B) is called a sub-bms of a BMS
(M1,M2) if each element of (A,B) is in (M1,M2), symbolically: (A,B) ⊆ (M1,M2)
if and only if A ⊆ M1 and B ⊆ M2. In this case, (M1,M2) is called a super bms
of (A,B).

Definition 2.18. [10] Let (M1,M2, τb) be a bms-space, ({k/u}, {m/v}) ∈ (M1,M2),
and (G,H) ⊆ (M1,M2). Then, (G,H) is called a bms neighborhood (or bms-nbd) of
({k/u}, {m/v}) if there exists an open BMS (P,Q) ∈ τb such that: ({k/u}, {m/v})
∈ (P,Q) ⊆ (G,H).

3. Separation Axioms in Binary Multiset Topological Space

In this section, introduce the binary multiset in separation axioms of Ti for
i=0,1,2,3,4,5, and T2 1

2
their basic definitions, theorems and examples.

Definition 3.1. A bms topological space (M1,M2, τb) is said to be bms T0- space. If
for any two jointly distinct points ({p1/x1, q1/y1}) and ({p2/x2, q2/y2}) ⊆ (M1,M2),
there exist (A,B) ∈ τb such that either ({p1/x1, q1/y1}) ⊆ (A,B) and ({p2/x2,
q2/y2}) ⊈ (M1/A,M2/B), or ({p1/x1, q1/y1}) ⊈ (M1/A,M2/B) and ({p2/x2, q2/y2})
⊆ (A,B).

Example 3.2. Let M1 = {1/a, 2/b, 3/c},M2 = {1/d, 3/e, 2/f} be a multiset and
τb = {(∅, ∅), (M1,M2), ({1/a}, {3/e}), ({1/b, 1/c}, {2/f, 2/e}), ({1/d}, ∅)}. Its clear
that , (M1,M2, τb) is bms T0-space and (U, V ) = ({1/b, 1/c}, {2/f, 2/e}) ⊆ τb.

Theorem 3.3. The bms T0 property is hereditary.
Proof. Let (M1,M2, τb) be a bms T0-space, and (A,B) ⊆ M1, (C,D) ⊆ M2. Then
τb = {(A,B) ∩ (C,D) : (M1,M2) ∈ τb}. For any distinct points ({p1/x1, q1/y1}) ∈
(A,B) and ({p2/x2, q2/y2}) ∈ (C,D) and ({p2/x2, q2/y2}) /∈ (A,B), or ({p1/x1,
q1/y1}) /∈ (C,D) and ({p2/x2, q2/y2}) ∈ (C,D). Since, τb = {(A,B) ∩ (C,D) :
(M1,M2) ∈ τb}, M1 ∩ (A,B) and M2 ∩ (C,D) as the disjoint open bms in τb
({p1/x1, q1/y1}) and ({p2/x2, q2/y2}). Hence, ({p1/x1, q1/y1}) ∈ M1 ∩ (A,B) and
({p2/x2, q2/y2}) /∈ M2∩(C,D), or ({p1/x1, q1/y1}) /∈ M1∩(A,B) and ({p2/x2, q2/y2})
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∈ M2 ∩ (C,D).
Definition 3.4. Let (M1,M2, τb) be a bms topological space. If for every order pair
of the bms ({p1/x1, q1/y1}) , ({p2/x2, q2/y2}) ⊆ (M1,M2), and ({p1/x1, q1/y1}) ̸=
({p2/x2, q2/y2}), (A,B), (C,D) ∈ τb, there exist disjoint points ({p1/x1, q1/y1}) ⊆
(A,B), ({p2/x2, q2/y2}) ⊈ (A,B) and ({p1/x1, q1/y1}) ⊈ (C,D), ({p2/x2, q2/y2}) ⊆
(C,D). It is known as (M1,M2, τb) is bms T1-space.

Example 3.5. Let M1 = {1/f, 3/g},M2 = {4/p, 7/q} be a bms and τb =
{(∅, ∅), (M1,M2), ({1/f}, {5/q}), ({2/g}, {2/p}), ({1/f}, ∅)}. It’s clear that bms
T0-space, but not bmsT1- space, becasue there exist ({1/f}, {5/q}) ⊆ τb, such that
({1/f}) ̸= ({5/q}).
Theorem 3.6. The property of being bms T1- space is hereditary property.
Proof. By the proof based on theorem 3.3.

Theorem 3.7. Let (M1,M2, τb) be a bms topological space. If ({P/X}, {Q/Y }) is
τb closed bms ∀({p1/x1, q1/y1}), ({p2/x2, q2/y2}) ∈ (M1,M2)

c.
Proof. Let ({P/X}, {Q/Y }) ⊆ (M1,M2), such that ({p1/x1, q1/y1}) ̸= ({p2/x2,
q2/y2}), by hypothesis ({p1/x1, q1/y1}), ({p2/x2, q2/y2}) are τb-closed bms on (M1,
M2). Then, ({p1/x1, q1/y1})c, ({p2/x2, q2/y2})c ∈ τb. Since, ({P/X}) ⊈ ({p2/x2,
q2/y2})c, ({Q/Y }) ⊆ ({p2/x2, q2/y2})c and ({P/X}) ⊆ ({p1/x1, q1/y1})c, ({Q/Y })
⊈ ({p1/x1, q1/y1})c. Hence (M1,M2, τb) is bms T0-space.

Definition 3.8. Let (M1,M2, τb) be a bms-topological space. If for every two pair of
elements in bms ({p1/x1, q1/y1}) and ({p2/x2, q2/y2}) ⊆ (M1,M2), (p1/x1, q1/y1) ̸=
({p2/x2, q2/y2}), Then, (A,B), (C,D) ∈ τb, there exist disjoint points ({p1/x1,
q1/y1}) ⊆ (A,B), {q1/y1, q2/y2} ⊆ (C,D) and (A,B)∩ (C,D) = ∅. It is known as
(M1,M2, τb) is bms T2-space.

Theorem 3.9. Any discrete bms topology from M1 to M2 is bms T0.
Proof. Let (M1,M2, τb) be a discrete bms topological space and (p1/x1, q1/y1),
(p2/x2, q2/y2) ∈ M1 ×M2 with ({p1/x1}) ̸= ({p2/x2}) or ({q1/y1}) ̸= ({(q2/y2)}).
Since, τb is a discrete bms topology from M1 to M2, ({p1/x1, q1/y1}) ∈ τb. There-
fore, ({p1/x1, q1/y1}) ∈ ({p1/x1, q1/y1}) and ({p2/x2, q2/y2}) ∈ (M1 \{p1/x1},M2 \
({q1/y1})) and ({p1/x1, q1/y1}), ({p2/x2, q2/y2}) ∈ M1 × M2 with ({p1/x1}) ̸=
({p2/x2}) or ({q1/y1}) ̸= ({q2/y2}). Hence (M1,M2, τb) is bms T0.

Theorem 3.10. Every indiscrete bms topology (M1,M2, τb) is not bms T2-space
where (M1,M2) more than or equal two different bms-points.
Proof. It follows that Theorem 3.9.

Theorem 3.11. Every bms T2-space is a bms T1-space.
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Proof. Let (M1,M2, τb) be a bms T2-space and ({p1/x1, q1/y1}), ({p2/x2, q2/y2}) ⊆
(M1,M2) therefore ({p1/x1, q1/y1}) ̸= ({p2/x2, q2/y2}), by the definition 3.8, (M1∩
(A,B))∩ (M2∩ (C,D)) = ((A,B)∩ (C,D))∩ (M1,M2) = ∅∩ (M1,M2) = ∅. There-
fore, ({p1/x1, q1/y1}) ⊆ (A,B) , ({p2/x2, q2/y2}) ⊆ (C,D). Then ({p1/x1, q1/y1}) ⊈
(C,D) , ({p2/x2, q2/y2}) ⊈ (A,B).

Definition 3.12. A bms topological space (M1,M2, τb) is bms - regular if and
only if for every closed bms of sub-bms in (A,B), (C,D) of (M1,M2) and each
point ({p1/x1, q1/y1}), ({p2/x2, q2/y2}) ∈ (M1,M2) there exist two disjoint open
bms in (({p1/x1, q1/y1})), ({p2/x2, q2/y2}). Therefore (A,B) ⊆ (C,D) and (A,B)∩
(C,D) = ∅.
Definition 3.13. Let (M1,M2, τb) be a bms-topoloigcal space. If for every dis-
joint points (Q1, Q2) ∈ τ cb , and (({p1/x1, q1/y1})), ({p2/x2, q2/y2}) ⊈ (Q1, Q2),
there exist (A,B), (C,D) ∈ τb, such that (Q1, Q2) ⊆ (A,B), (({p1/x1, q1/y1})) ⊆
(A,B), ({q1/y1, q2/y2}) ⊈ (C,D), and (A,B) ∩ (C,D) = ∅. It is known as
(M1,M2, τb) is bms-regular space.

Definition 3.14. A bms-topological space (M1,M2, τb) is said to be a bms T3-Space
if:
1.(M1,M2, τb) is bms-regular space.
2. (M1,M2, τb) is bms T1-space.

Note 3.15. Every discrete bms topology from M1 to M2 is bms T3-space.

Theorem 3.16. Let (M1,M2, τb) be a bms-regular space and (A,B) ⊆ (M1,M2).
then (A,B) is bms- regular space.
Proof. Let sub-bms of (A,B) in bms topological space ({p1/x1, q1/y1}) ⊆ M1,
({p1/x1, q1/y1}) ⊈ M2, and τb-closed bms in (M1,M2), such that (A,B) = (Q1, Q2)∩
V . Since, ({p1/x1, q1/y1}) ⊈ (A,B). Then, ({p2/x2, q2/y2}) ⊈ (Q1, Q2), (M1,M2, τb)
be bms-regular space, (Q1, Q2) ⊆ (A,B), ({p2/x2, q2/y2}) ⊆ (C,D) and (A,B) ∩
(C,D) = ∅. Then, (Q1, Q2)∩ (U, V ) ⊆ (A,B)∩ (U, V ), ({p1/x1, q1/y1}) ⊆ (A,B)∩
(U, V ), and ((A,B) ∩ (U, V )) ∩ ((C,D) ∩ (U, V )) = ((A,B) ∩ (C,D)) ∩ (U, V ) =
∅ ∩ (U, V ) = ∅. Hence (A,B) is bms-regular space.

Definition 3.17. Let (M1,M2, τb) be a bms-topological space. If for every disjoint
points (Q1, Q2) ∈ τ cb , and Q1 ∩ Q2 = ∅, Then, there exist (E,F ) ∈ τb, such that
Q1 ⊆ E,Q2 ⊆ F , and E ∩ F = ∅. Hence, (M1,M2, τb) is bms-normal space.

Definition 3.18. A bms-topological space (M1,M2, τb) is said to be a bms T4-space
if:
1. (M1,M2, τb) is bms-normal space.
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2. (M1,M2, τb) is bms T1-space.

Theorem 3.19. Every closed Sub-bms space of bms-normal space is also a bms-
normal space.

Definition 3.20. Let (M1,M2, τb) be a bms-topological space and let( A,B) ⊆
(M1,M2) is a two non-empty bms. Then, ( A,B) are separated bms if A ∩ B =
∅, A ∩B = ∅.
Definition 3.21. A bms-topological space (M1,M2, τb) is said to be bms-completely
normal space iff for any two separated sub-bms (A,B) of (M1,M2) there exist
(E,F ) ∈ τb such that (A,B) ⊆ (E,F ).

Theorem 3.22. Every bms-completely normal space is bms-normal space.
Proof. Let (M1,M2, τb) be a bms-completely normal space and (A,B) sub-bms
of (M1,M2) such that, A ∩ B = ∅ and A ∩ B = ∅. Therefore, (E,F ) ∈ τb,
(A,B) ⊆ (E,F ) and E ∩ F = ∅. Hence (M1,M2, τb) is a bms-normal space.

Definition 3.23. Let (M1,M2, τb) be a bms-topological space. If for every two sin-
gleton ({p1/x1, q1/y1}), ({q1/y1, q2, y2}) ⊆ (M1,M2) such that ({p1/x1, q1/y1}) ̸=
({p2/x2, q2/y2}) and (E,F ) ∈ τb, ({p1/x1, q1/y1}) ⊆ E, ({q1/y1, q2, y2}) ⊆ F ,
E ∩ F = ∅. Hence (M1,M2, τb) is bms T2 1

2

-Space.

Note 3.24. Every discrete bms-topology (M1,M2, P
∗(M1,M2)) is bms T2 1

2

-Space.

Theorem 3.25. If (M1,M2, τb1) is bms T2 1
2

-space and τb1 ≤ τb2, Then, (N1, N2, τb2)

is also bms T2 1
2

-space.

Proof. Let (M1,M2, τb1) be a bms T2 1
2

- space and τb1 ≤ τb2 . Every open bms in τb1

is also an open bms in τb2 . Since, (N1, N2, τb2) is bms T2 1
2

- space, ({p1/x1, q1/y1})
and ({p2/x2, q2/y2}) in (N1, N2), ({p1/x1, q1/y1}) ̸= ({q1/y1, q2/y2}), there exist
(E,F ) ∈ τb2 , ({p1/x1, q1/y1}) ⊆ E, ({p2/x2, q2/y2}) ⊆ F , and E ∩ F = ∅. Since,
(M1,M2, τb1) is a bms T2 1

2

- space, ({p1/x1, q1/y1}) ⊆ E1, ({p2/x2, q2/y2}) ⊆ F1, and

E1∩F1 = ∅. Thus, (E1, F1) ∈ τb2 and ({p1/x1, q1/y1}) ⊆ E1, ({p2/x2, q2/y2}) ⊆ F1,
and E1 ∩ F1 = ∅ in τb2 . Hence, (N1, N2, τb2) is a bms T2 1

2

- space.
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4. Comparison of Relation Between Separation Axioms in Binary Mul-
tiset

In this section, the relation of Ti (i=0,1,2,3,4, and 5) axioms and their proper-
ties comparison of bms topological space are discussed.

Theorem 4.1. If (M1,M2, τb1) is bms T0-space and τb1 ≤ τb2, Then, (N1, N2, τb2)
is also bmsT0-space.
Proof. Let (M1,M2, τb1) be a bms-T0-space and ({p1/x1, q1/y1}) ∈ M1, ({p2/x2,
q2/y2}) ∈ M2, there exist disjoint open bms ({PX}) ∈ τb1({p1/x1, q1/y1}) and
({QY }) ∈ τb2({p2/x2, q2/y2}) such that ({PX}) ∩ ({QY }) = ∅. Assume τb1 ≤ τb2 ,
which implies that every open bms in τb1 is also an open bms in τb2 . Therefore
(N1, N2, τb2) is a bms T0-space, ({p1/x1, q1/y1}) ∈ N1 and ({p2/x2, q2/y2}) ∈
N2. Since, (M1,M2, τb1) is a bms T0-space, there exist open bms ({P/X}) ∈
({p1/x1, q1/y1}) and ({Q/Y }) ∈ ({p2/x2, q2/y2}) such that ({P/X})∩ ({Q/Y }) =
∅. Therefore, ({P/X}) ∈ ({p1/x1, q1/y1}) and ({Q/Y }) ∈ ({p2/x2, q2/y2}). Be-
cause ({P/X}) ∩ ({Q/Y }) = ∅ in τb1 , it must also hold in τb2 . Hence, for any
({p1/x1, q1/y1}) ∈ N1 and ({p2/x2, q2/y2}) ∈ N2, are disjoint open bms ({P/X}) ∈
({p1/x1, q1/y1}) and ({Q/Y }) ∈ ({p2/x2, q2/y2}). Hence (N1, N2, τb2) is a bms T0-
space.

Theorem 4.2. Every bms T1-space is bms T0-space.

Remark 4.3. Every discrete bms-topology (M1,M2, P
∗(M1,M2)) is bms T1-space.

But, if (M1,M2) is a finite bms and (M1,M2, τb) is bms T1-space not equal to the
τb = P ∗(M1,M2) in discrete bms-topology. As shown in the below example.

Example 4.4. LetM1 = {3/c, 1/d},M2 = {2/v, 5/u}, τb = {(∅, ∅), (M1,M2), ({1/c,
1/d}, {2/v, 2/u}), ({2/c}, {3/u}), ({1/d}, {1/u})} ≠ P ∗(M1,M2). But (M1,M2, τb)
is bms T1-space.

Theorem 4.5. If (M1,M2, τb1) is bms T1-space and τb1 ≤ τb2, Then, (N1, N2, τb2)
is also bms T1-space.
Proof. Let (M1,M2, τb1) be a bms-T0-space and for any ({p1/x1, q1/y1}) ∈ M1 and
({p2/x2, q2/y2}) ∈ M2, there exist disjoint open bms ({P/X}) ∈ ({p1/x1, q1/y1})
and ({Q/Y }) ∈ ({p2/x2, q2/y2}) such that ({P/X}) ∩ ({Q/Y }) = ∅. Therefore
every open bms in τb1 is also an open bms in τb2 and (N1, N2, τb2) is a bms T1-
space in ({p1/x1, q1/y1}) ∈ N1, ({p2/x2, q2/y2}) ∈ N2. Since, (M1,M2, τb1) is a
bms-T1-space, there exist open bms ({P/X}) ∈ ({p1/x1, q1/y1}) and ({Q/Y }) ∈
({p2/x2, q2/y2}) ({p1/x1, q1/y1}) ∈ N1 and ({p2/x2, q2/y2}) ∈ N2, are disjoint open
bms. Hence (N1, N2, τb2) is a bms T1-space.

Theorem 4.6. The property of being bms T2- space is hereditary property.
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Proof. Let (M1,M2, τb) be a bms T2-space (N1, N2) ⊆ (M1,M2), ({p1/x1, q1/y1})
and ({p2/x2, q2/y2}) ⊆ (M1,M2), such that ({p1/x1, q1/y1}) ̸= ({p2/x2, q2/y2}).
Since, (M1,M2, τb) is bms T2- space. Then, (E,F ) ∈ τb, ({p1/x1, q1/y1}) ⊆ F
, ({p2/x2, q2/y2}) ⊆ E and E ∩ F = ∅. By the definition 3.8. of ({P/X}) ∩
E, ({Q/Y })∩F ∈ τb. Therefore ({p1/x1, q1/y1}) ⊆ ({P/X})∩E and ({p2/x2, q2/y2})
⊆ ({Q/Y })∩F . Since, E∩F = ∅. Also, (({P/X})∩E)∩(({P/X}, {Q/Y })∩F ) =
(E ∩ F ) ∩ ({P/X}, {Q/Y }) = ∅ ∩ ({P/X}, {Q/Y }) = ∅. Hence, (N1, N2) is bms
T2-space.

Theorem 4.7. If (M1,M2, τb1) is bms T2-space and τb1 ≤ τb2, Then, (N1, N2, τb2)
is also bms T2-space.
Proof. The above condition obviously true for the Definition of 3.8 and Theorem
3.11.

Corollary 4.8. Every bms sub-bms space of bms T3-space is also a bms T3-space.

Theorem 4.9. Every bms T3-space is a bms-regular space.
Proof. By using the Definition 3.13, and definition 3.14.

Remark 4.10. The converse of the Theorem 3.15 is not true in general as follow-
ing the example.

Example 4.11. Let M1 = {1/e, 3/f},M2 = {4/s, 5/r} and τb = {(∅, ∅), (M1,M2),
({1/s}, {2/f}), ({1/f, 1/e}, {2/s, 1/r})}. Then, τ cb = {(M1,M2), (∅, ∅), ({3/s, 5/r},
{1/e, 1/f}), ({2/f}, {2/s, 4/r})}. Hence (M1,M2, τb) is a bms-regular space but
not a bms-T1- space.

Corollary 4.12. The property of being bms T4- space is bms topological property.

Theorem 4.13. The property of being bms -completely normal space is a heredi-
tary property.

Definition 4.14. A bms-topological space (M1,M2, τb) is said to be bms T5-space
if:

1. (M1,M2, τb) is bms-completely normal space.

2. (M1,M2, τb) is bms T1-space.

Theorem 4.15. Every bms T5-space is a bms T4-space.

Theorem 4.16. The property of being a bms T5-space is a hereditary property.

Theorem 4.17. The property of being bms T2 1
2

- space is a hereditary property.

Proof. Let (M1,M2, τb) be a bms T2 1
2

-space, (N1, N2) ⊆ (M1,M2) and (N1,
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N2, τb) be a bms subspace of (M1,M2, τb). Therefore, (N1, N2, τb) is bms T2 1
2

-space,

({p1/x1, q1/y1}), ({q1/y1, q2, y2}) ⊆ (M1,M2), ({p1/x1, q1/y1}) ̸= ({p2/x2, q2/y2}).
There exist (E,F ) ∈ τb such that ({p1/x1, q1/y1}) ⊆ E, ({q1/y1, q2, y2}) ⊆ F , and
E ∩ F = ∅. By the definition 3.23 of sub-bms (M1 ∩ E), (M2 ∩ F ) ∈ τb. There-
fore {p1/x1, p2/x2} ⊆ (M1 ∩ E), ({q1/y1, q2, y2}) ⊆ (M2 ∩ F ). Also, (M1 ∩ E) ∩
(M2 ∩ F ) ⊆ (E ∩ M1) ∩ (F ∩ M2) = (E ∩ F ) ∩ (M1,M2) = ∅ ∩ (M1,M2) = ∅,
(M1 ∩ E) ∩ (M2 ∩ F ) = ∅. Hence (M1,M2, τb1) is bms T2 1

2

-space.

Theorem 4.18. Every bms T2 1
2

- space is a bms T2-space.

Proof. Let (M1,M2, τb) be a bms T2 1
2

- space, by definition 3.23., ({p1/x1, q1/y1})
and ({p2/x2, q2/y2}) in (M1,M2) and ({p1/x1, q1/y1}) ̸= ({p2/x2, q2/y2}), (E,F ) ∈
τb such that ({p1/x1, q1/y1}) ⊆ E, ({p2/x2, q2/y2}) ⊆ F , E ∩ F = ∅. Therefore,
(M1,M2, τb) is a bms T2-space, for any two distinct bms points ({p1/x1, q1/y1}) ̸=
({q/y1, q2y2}) in (M1,M2), and ({p1/x1, q1/y1}) ∈ M1 and ({q1/y1, q2/y2}) ∈ M2.
Therefore ({p1/x1, q1/y1}) ̸= ({p2/x2, q2/y2}), by the definition 3.23., of a bms
T2 1

2

- space, there exist open bms E and F in τb such that ({p1/x1, q1/y1}) ⊆ E,

({p2/x2, q2/y2}) ⊆ F , and E ∩ F = ∅. Hence, every bms T2 1
2

- space is a bms T2-
space.

5. Characterization of Separation Axioms in Binary Multiset

In this section, the concept of bms separation axioms T0, T1, T2, T3, T4 and T5

spaces and explore some of their characterizations are derived.

Theorem 5.1. Let (M1,M2, τb) be a bms topological space for (i) Every bms T0-
space is bms T0-space.
(ii) Every bms T1-space is bms T1 -space.
(iii) Every bms T2 -space is bms T2 -space.
(iv) Every bms T1- space is bms T0-space.
(v) Every bms T2 -space is bms T0-space.
(vi) Every bms T2 -space is bms T1 -space.
Proof. (i) Let (M1,M2) be a bms T0-space ({p1/x1, q1/y1}) and ({p2/x2, q2/y2}) a
two distinct points of (M1,M2) is a bms T0-space, there exist open bms (M1,M2).
Such that ({p1/x1, q1/y1}) ∈ M1 and ({p2/x2, q2/y2}) ∈ M2. There exist open
bms (M1,M2) such that ({p1/x1, q1/y1}) ∈ M1 and ({p2/x2, q2/y2}) ∈ M2 changes
occurred in (M1,M2)is bms T0-space.
(ii) Proof of (ii) to (vi) is obvious.

Theorem 5.2. In bms topological space, the following
(i) Every bms T4-space is a bms T3-space.
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(ii) Every bms-normal space is not necessarily bms-regular.
Proof. (i) Let (M1,M2, τb) be a bms T4-space so that by definition 3.20 it is
a bms T1-space as well as bms-normal space, and bms T1-space to be bms T3

as known as bms-regular. Let (M1,M2) be any sub-bms of (A,B), (C,D) and
({p1/x1, q1/y1}) ∈ (A,B) and ({p2/x2, q2/y2}) ∈ (C,D). Hence (M1,M2) in sub-
bms of bms T1-space.

Remark 5.3. The following diagram is relation on the separation axioms in bms
topological space is reversible process not in irreversible.

6. Application of Separation Axioms in Binary Multiset
A gene mutation is a permanent alteration in the DNA sequence that makes up

a gene. These changes can occur naturally during DNA replication or be triggered
by external factors like radiation, chemicals, or viruses. Mutations can affect how
proteins are made, potentially altering traits or causing genetic disorders. While
many mutations are harmful, some can be beneficial or neutral—and they’re a key
driver of evolution. DNA sequencing involves reading the order of nucleotides (A,
T, C, G) in a DNA molecule A bms can model DNA sequences when repeated
elements and binary relationships of (e.g. base pairing) are crucial.

Example 6.1. LetM3′

5′ = GGATCC = {2/G, 1/A, 1/T, 2/C},M5′

3′ = CCTAGG =
{2/C, 2/G, 1/A, 1/T}, be genetic sequence of binary multiset, τb = {(ϕ, ϕ), (M3′

5′ ,M5′

3′),
({1/T, 1/A}, {1/C, 1/G}), ({2/C},M3′

5′), (M5′

3′ , {1/G, 1/A})} . Since (U, V ) ⊆ ({1/T,
1/A}, {1/C, 1/G}) = τb is a bms T0- space.

Example 6.2. LetM3′

5′ = GGATCC = {2/G, 1/A, 1/T, 2/C},M5′

3′ = CCTAGG =
{2/C, 2/G, 1/A, 1/T} , be genetic binary multiset τb = {(ϕ, ϕ), (M3′

5′ ,M5′

3′), ({1/T,
1/A}, {1/C, 1/G}), ({2/C},M3′

5′), (M5′

3′ , {1/G, 1/A})} . Thus, ({1/G, 1/A}) ⊆ M1,
({1/C, 1/G}) ⊆ M2 its bms T0-space but not bms T1-space.

Example 6.3. Let M3′

5′ = ACTAG = {2/A, 1/C, 1/T, 1/G},M5′

3′ = CTAGA =
{1/C, 1/T, 2/A, 1/G} be a genetic bms topological space τb = {(ϕ, ϕ), (M3′

5′ ,M5′

3′),
({1/A}, {1/T}), ({1/C}, {1/G}), ({1/G, }, {1/C}), ({1/T}, {1/A})}. Its a bms T3
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-space. Here M and N are different by the τb is mutation. Because the parining of
genetic code does not equal the amino acid so the starts of mutation.

Example 6.4. Let M=GGGCAGUCUC CCGGCGUUUA AGGGAUCCUG
AACUUCGUCG= {13/, 21/C, 6/A, 10/U}, N=CUCCCAUCCA AUCAGUCCGC
CUCACGGAUG GAGUUG ={8/G, 13/C, 8/U, 6/A} be a genetic coding τb =
{(ϕ, ϕ), (M,N), ({2/G}, {2/G}), ({10/G}, {6/C}), ({6/A}, {6/U}), ({3/U}, {2/A}),
({15/G}, {10/C})}. Its satisfied bms T4-space, and M ̸= N is formed nonsense
mutation. A genetic change that introduces a premature stop codon in DNA se-
quence. This often leads to a truncated and non-functional protein.

7. Conclusion
In this paper, introduce the separation axiom in binary multiset topological

space. The behavior of these axioms under various types of mappings is exam-
ined.The separation axioms T0, T1, T2, T3, T4, T5 and T2 1

2
are fundamental concepts

in bms topology.These axioms provide a hierarchy of bms topological properties
that are crucial in understanding the structure and properties of binary multiset
topological spaces. Also using some application of DNA sequence problem are
discussed.
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